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Jakob Bergner1, Daphne Schössow1, Stephan Preihs1, Jürgen Peissig1,
Yves Wycisk2, Kilian Sander2, Reinhard Kopiez2, Friedrich Platz3

1 Leibniz Universität Hannover, Email: jakob.bergner@ikt.uni-hannover.de
2 HMTM Hannover
3 HMDK Stuttgart

Introduction
The term Immersion in virtual environments is widely
defined as “the effect that users lose the awareness that
they experience an illusory reality but perceive their en-
vironment as real” [1]. Obviously immersion refers to
a perceptual, cognitive and possible psychological con-
struct that is formed during a user experience. At the
same time physical properties of any reproduction can
be assessed to investigate their influence on immersion.
The term Immersive Audio usually refers to specific au-
dio technologies that promise to create enhanced auditive
experiences which allows the user to not only listen to
music but dive into a sort of concert situation, i.e. to have
the feeling to witness an actual music performance [2, 3].
With home entertainment systems, the promise is that a
larger number of loudspeakers will create a higher level
of immersion. However, it is not definitively explained,
what alteration in the soundfield leads to this percep-
tion or in other words, which acoustic parameter actu-
ally changes measurably with the use of immersive audio
technologies. Thus, this work tries to contribute to an
identification of relevant acoustic dimensions for the as-
sessment of immersive audio reproduction as realization
of (virtual) acoustic environments.

Samples of Immersive Music Reproduc-
tion
The samples of music reproductions analyzed in this
work cover a specific aspect of immersive audio. The
stimulus set comprises 8 excerpts of musical pieces of
varying genre, ensemble size and recording/production
technique. Each musical piece is available in four ver-
sions of different channel-based loudspeaker reproduc-
tion formats: mono (center loudspeaker), stereo (left +
right lsp.), 2D (5.1) and 3D (5.1.4). For the produc-
tion of the stimuli two audio engineers with experience in
multi-channel mixing were engaged to produce three well-
sounding mixes (stereo, 2D and 3D) from provided multi-
track recordings without any other restrictions. The
loudness of the stimuli within the four playback formats
was calibrated to minimise the median deviation of the
short-term LUFS according to ITU-R BS.1770-4 [4]. Be-
tween the musical pieces a subjective loudness adaptation
was applied aiming for plausibility in the reproduction of
music with different ensemble sizes and types.

All 32 Stimuli were played back through a loudspeaker
system with positioning according to ITU-R BS.2051-
2 [5] and equalization based on ITU-R BS.1116-3 [6] with

applied room gain [7] preserving an expected low fre-
quency behaviour for loudspeaker reproduction in rooms.
The stimuli were then re-recorded at the listening po-
sition with a spherical microphone array (mhacoustics
Eigenmike) for capturing the three dimensional sound-
field. From the microphone array signals three sig-
nal representations were deduced: 4th-order Ambison-
ics (HOA), a binaural representation with an appropri-
ate decoder [8] and a monophonic pressure representation
based on the 0th-order Ambisonics channel.

Acoustic Fingerprinting
The method of acoustic fingerprinting describes a process
to obtain fundamental acoustic dimensions that are suit-
able to characterize and compare acoustic environments
[9]. It is inspired by the approach to assess soundscapes
defined in ISO 12913-1/2/3 [10, 11, 12] and associated
approaches for the perceptual and emotional assessment
of soundscapes [13]. The method assumes that a range
of acoustic indicators with potential relevance for hu-
man auditory perception can be taken into account to
identify underlying acoustic dimensions. A manageable
number of dimensions then forms a fingerprint with char-
acterizing and comparable properties. The approach to
identify the dimensions that is followed in this work is
data-driven. A large number of observations of a large
number of indicators are fed into multivariate analysis.
The indicators are separated into three a-priori categories
loudness, quality and spaciousness as listed in the follow-
ing:

Quality: MFCC, Spectral Brightness, ~ Centroid, ~
Crest Factor, ~ Decrease, ~ Entropy, ~ Flatness,
~ Flux, ~ Irregularity, ~ Kurtosis, ~ Roll-Off, ~
Skewness, ~ Spread, Timbral Booming, Roughness,
Sharpness, Fluctuation Strength

Loudness: SPL (A-/Z-weighting), Octave Bands, Loud-
ness (ISO 532-1/2), LUFS (ITU-R BS.1770-4)

Spaciousness: ILD, ITD, IACC, IC, Direction of Ar-
rival (hor., vert.) [14], Diffuseness [14], Directivity
Index (hor., vert., sph.), Ambisonics Energy Ratio

The indicators of the categories loudness and spacious-
ness were calculated both for a broadband frequency
range as well as for individual frequency bands listed in
Table 1. All indicators were calculated as time series with
window length of lw = 0.1 s and hop size of lh = 0.05 s.
Each indicator time series was then scaled to an expected
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Table 1: Frequency limits in Hz of analysis bands.

ID 0 1 2 3 4 5 6 7

flo 65 242 527 986 1724 2910 4816 7880
fhi 238 521 975 1707 2882 4772 7809 12691

value range and logarithmic sampling was applied where
necessary. The preprocessing stage was completed by
applying z-standardization (removal of mean; normaliza-
tion to unit variance) to all indicators individually. In
total the input data consists of 227 indicators and 33235
observations each.
The indicator’s time series were then subject to multi-
variate analysis methods, precisely to Factor Analysis
(FA) [15]. FA assumes that underlying latent factors
become manifest in observed indicators as shown in Fig-
ure 1. FA can be used to transform data from the original
space into an optimized space of latent dimensions. The
operation itself to obtain the factor scores Y is realized
by matrix multiplication as shown in Eq. 1

Y = X · L . (1)

where X is a [Nobersavtions × Nindicators] matrix of the
original data and L a specific loading matrix of dimension
[Nindicators ×Nfactors]. The loading matrix comprises the
individual weights of each indicator into each factor. The
sum over columns, i.e. among indicators yields the sum of
square loadings or explained variance of a certain factor

s2j =

Ni∑
i=1

l2ij . (2)

The relative loading represents the direction of the trans-
formation and can be described as

Lrel = L · diag{s}−1 (3)

In FA it is an important decision how many factors to
keep, i.e. in this case underlying acoustic dimensions.
The Kaiser Criterion assumes factors with s2j ≤ 1 to be
relevant since they inhibit more variance than a single in-
dicator. However the parallel analysis according to Horn
is a more convenient method since it compares the ex-
plained variance with a random sample of the same size
by means of a Monte-Carlo simulation. The results for
both criteria can be found in Table 2 for pure and varimax
rotated FA. In this work we follow the parallel analysis
suggestion for varimax rotated FA and keep the 8 most

l11 l21
l12

l22

l32
l3...

l...

Factor1 Factor2 . . .

ε1 ε2 ε3 εN

Indicator1 Indicator2 Indicator3 . . .

Figure 1: Concept of Factor Analysis with loadings lij
and unique variances εi.

Table 2: Relevant number of factors accoring to Kaiser’s
criterion and parallel analysis for pure and rotated FA.

Kaiser Criterion s2j ≤ 1 Parallel Analysis

Nrelevant cum. s2j Nrelevant cum. s2j

FA 25 160.31
(70.65%)

9 129.27
(56.95%)

FA varimax 26 164.56
(72.49%)

8 113.90
(50.18%)
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Figure 2: Top: explained variance portion in % scree
plot), bottom: relative loading matrix Lrel.

prominent factors. Their explained variance portion can
be taken as scree plot from Figure 2 (top) and the associ-
ated relative loading matrix Lrel is visualized in Figure 2
(bottom).

Results
The distribution of the resulting factor scores Y can be
found in Figure 3. Each of the 8 most relevant factors is
shown individually where factor scores (ordinate) for the
individual loudspeaker setups (color coded) are grouped
for each music piece (abscissa). Outliers exist but are
omitted in the visualization for clarity. We can observe
different patterns between the factors. For example
factor 1 (top) shows differences between the musical
pieces but seems to be stable between the loudspeaker
setups. Other factors like factor 5 (third from top) show
distinct differences between loudspeaker setups but not
that much between musical pieces. In order to find
underlying acoustic dimensions that actually change
with the number and arrangement of loudspeakers, ap-
propriate statistics were applied. A test for normality for
each subgroup (distribution of factor scores for a specific
musical piece and a specific loudspeaker setup) failed in
many cases. For this purpose Shapiro-Wilk tests were
conducted and additionally validated with Q-Q plots
to compensate their weakness for large sample sizes.
Subsequently non-parametric methods were applied,
namely a Friedman Rank Sum test (as alternative for
one-way repeated measure ANOVA) for testing the null
hypothesis H0: “There is no difference in scores of a
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Figure 3: Boxplots of the factor score distributions for
the first 8 most relevant factors.

specific factor between mono, stereo, 2D and 3D loud-
speaker setups.” with a level of significance of α = 0.05.
The results of the Friedman test can be found in Table 3.
It shows a highly significant factor 5 (p < 0.001) and
three moderately significant factors (2, 4, 8) (p < 0.05).
Since Kendall’s coefficient of concordance is moderate
to low for these factors (W < 0.5) only factor 5 with
excellent effect size W > 0.9 is taken into account for

Table 3: Friedman test statistics: p-values and Kendall’s
W.

1 3 5 6 2 4 8 11

W .28125 .01250 .95625 .38125 .37500 .38125 .23125 .05625
p .08031 .96003 .00004 .02736 .02929 .02736 .13568 .71730

further analysis. Posthoc paired Wilcoxon tests were
conducted to examine if the individual loudspeaker
setups differ from each other, which could be confirmed
for all musical pieces with low p-values (p < 0.001).
Obviously factor 5 reliably reflects the differences of
loudspeaker setups while the investigation of the indica-
tor composition of this factor confirms this assumptions.
Table 4 shows the indicators with highest absolute
loadings li5 (up to 51% of the total factor’s explained
variance). It can be seen that this factor is mainly

Table 4: Indicator composition of factor 5 with relative
loadings lrel,ij in parentheses. Trailing numbers of the in-
dicators denote the frequency band according to Table 1.

Descr. s2j Indicator composition

“Diffusity” 12.51
(5.51%)

sphDIAz5(-0.242), sphDIAz6(-0.242),
diff6(0.235), sphDIAz4(-0.233), sphDI6(-

0.233), diff4(0.233), diff5(0.232), sphDI5(-

0.231), sphDI4(-0.216), sphDIAz7(-0.213)

composed by three indicators. The indicator sphDIAz
refers to a spherical directivity index with respect to
the horizontal or azimuthal plane based on plane wave
decomposition of the higher-order Ambisonics signals.
It is present for the frequency bands 4, 5, 6 and 7 which
covers a frequency range between 1.7 and 12.7 kHz
(cf. Table 1). The indicator diff refers to diffuseness
according to [14] based on the magnitude of the three-
dimensional intensity vector. Lastly, sphDI refers again
to a spherical directivity index, this time respecting the
full sphere. These three indicator groups mainly form
factor 5, which is why the semantic description of this
factor as “Diffusity” might be reasonable.

An overall comparison of the identified underlying acous-
tic dimensions can be found in Figure 4. It shows the
acoustic fingerprint of two exemplary musical pieces for
all four loudspeaker setups. The polar axes of each fin-
gerprint represents the respective factor or acoustic di-
mension. Each time window of 0.1 s is represented by a
faint blue polar line which also supports a general un-
derstanding of the temporal distribution of factor scores.
This visualization allows to compare general character-
istics of the musical piece as well as the progression of
the dimensions between the loudspeaker setups. It can
be seen that factor 5 (axes to the right; 3 o’clock) in-
creases with the number of loudspeakers in use as it was
assumed.

Discussion and Outlook
This work investigated which acoustic properties actually
change when music reproduction setups with increasing
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(a) S1: Mono (b) S2: Mono

(c) S1: Stereo (d) S2: Stereo

(e) S1: 2D (f) S2: 2D

(g) S1: 3D (h) S2: 3D

Figure 4: Acoustic fingerprints ob music pieces Laudate
(S1; left column) and School (S2; right column) for the
four loudspeaker setups.

number of loudspeakers are used that promise enhanced
immersive experience. By means of factor analysis (FA)
8 relevant underlying acoustic dimensions could be iden-
tified of which solely the dimension “Diffusity” shows sig-
nificant differences between loudspeaker setups. The un-
derlying dimensions can be taken into account to form
an acoustic fingerprint that can be used to characterize
and compare general acoustic environments.
The next steps include investigations according to gen-
eralize the results. The questions would be if a single
loading matrix can be utilized for all kind of acoustic
environments or if this should be adapted dependent on
the application. Further important future work includes
an in-depth temporal analysis since the current process-
ing chain only asses score distributions. The question
if and how indicators and factors are modulated is ex-
pected to be relevant for the temporal characteristis of
human auditory perception. Methods to assess these as-

pects inlcude cross-correlations, derivatives and Fourier
Series as well as statistical models such as autoregres-
sive integrated moving average (ARIMA) or functional
principle component analysis (FPCA).
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